

Mesa Temática: INCENDIOS FORESTALES

Efecto de la densidad de pulsos LiDAR en la caracterización estructural de combustibles en

Eva Marino¹

masas de pinar

José Luis Tomé¹, Javier Madrigal², Mercedes Guijarro², Carmen Hernando²

¹ AGRESTA Sociedad Cooperativa ² INIA-CIFOR, Laboratorio de Incendios Forestales

Plasencia, 29 junio 2017

Proyecto GEPRIF

Reducción de la Severidad del Fuego Mediante Nuevas Herramientas y Tecnologías para la Gestión Integrada de la Protección contra los Incendios Forestales

Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria

OBJETIVO 1: Nuevos sistemas de evaluación de los combustibles

Tecnologías complementarias

Imágenes espectrales

- Caracterización 3D de la estructura de los combustibles forestales
- Evolución de la humedad del combustible y su inflamabilidad
- Cartografía dinámica del riesgo de incendio integrando la variabilidad estacional

LiDAR aéreo: antecedentes

- Revolución: adquisición masiva de información en grandes superficies
- Disponibilidad: PNOA cobertura nacional
- Gran potencial en aplicaciones forestales:
 uso más generalizado
- Info 3D: estructura de los combustibles
- ¿Son adecuadas las características de los vuelos LiDAR que usamos?

Objetivo específico

Analizar el efecto de densidad de pulsos LiDAR aéreo en una zona forestal

- Comparativa de métricas derivadas de vuelos distintos
- Impacto en la modelización de parámetros estructurales (combustibles)

Zona de estudio

Monte Pinar de Valsaín, Segovia (PN Sierra de Guadarrama)

- Masa natural de pino silvestre (7400 ha)
- Gestión forestal sostenible compatibilizando usos (producción, recreativo...)

- Buena regeneración natural
- Pinar con distintas estructuras (continuidad, estratos, regeneración)

Fuentes de datos

Inventario de campo

- 202 parcelas circulares (r=13 m)
- GPS submétrico

Datos LiDAR con distinta densidad

- Vuelo 2009 (específico): 1,5-5 p/m²
- Vuelo 2010 (PNOA): 0,5 p/m²

والمصوري للمربية فرارق المهدمة تشمير فارتحا الر

Variables estructurales

Altura dominante (H₀) Altura de pies menores (H_menores) N° pies menores (N_menores) Carga de combustible disponible en las copas (CFL)

• Ecuaciones alométricas para pino silvestre en Sierra de Guadarrama (Montero et al. 2005)

Biomasa seca (kg) = CF $e^a D^b$ CF = $e^{(SEE^{2}/2)}$ D = diámetro normal

- Cálculo de combustibles finos: 2 valores disponibles
 - CFL₁ Biomasa foliar
 - CFL₂ Biomasa foliar + ramillas finas (< 2 cm)

Datos parcelas de inventario

Variable	Descripción (unidades)	Min.	Max.	Media	Desv. estandar
N	Densidad del arbolado (nº pies/ha)	75,34	2147,18	604,12	374,09
G	Área basimétrica (m²/ha)	14,29	91,01	41,67	14,53
Но	Ho Altura dominante (m)		35,37	20,56	5,07
CFL ₁	Carga en copas - biomasa foliar (kg/m²)	0,32	2,08	1,00	0,35
CFL ₂	Carga en copas - biomasa foliar + ramillas finas (kg/m²)	0,74	4,84	2,33	0,81
N_menores	Densidad del regenerado (nºpies menores/ha)	0,00	2712,22	253,34	395,20
h_menores	Altura media de los pies menores (m)	0,00	8,00	2,97	2,02
h_mat	Altura media del matorral (m)	0,00	2,5	0,64	0,51
C_mat	Cobertura del matorral (%)	0,00	95,00	18,59	23,54

Procesado datos LiDAR

Métricas LiDAR y variables estructurales asociadas

Percentiles altos de alturas de los retornos

✓ altura del estrato arbolado

Altura media del estrato < 2m

✓ combustibles de matorral, sotobosque y regenerado

Métricas LiDAR y variables estructurales asociadas

Porcentajes de primeros retornos para el total del perfil de la vegetación y las copas (> 2 m)

✓ fracciones de cabida cubierta (MORSDORF et al. 2006)

Porcentaje de todos los retornos en el estrato < 2m

✓ cobertura en el estrato inferior (matorral, sotobosque, y regenerado) (RIAÑO et al. 2003)

FCC copas FCC total (1° retornos)

FCC mat (todos retornos)

Métricas LiDAR y variables estructurales asociadas

Indice Canopy Relief Ratio del perfil total y del estrato superior de las copas (CRR_05a50, CRR_2a50)

 ✓ estructura vertical de la masa, continuidad de combustibles (PARKER & RUSS, 2004)

Porcentajes nº de retornos por tramos de alturas (PRN)

 ✓ distribución y densidad aparente del combustible, valor normalizado (SKOWRONSKI et al. 2007)

% normalizado de retornos LiDAR (PRN)

Resultados: métricas LiDAR

Variable	Estrato	Test (p-valor)
FCC_total	0.5-50 m	Wilcoxon (p=0.00308)
FCC_copas	2-50 m	Wilcoxon (p=0.00193)
FCC_mat	0.5-2 m	Wilcoxon (p=0.00715)
H_P99	2-50 m	T-test (p=0.8873)
H_P95	2-50 m	T-test (p=0.7103)
H_P90	2-50 m	T-test (p=0.6416)
H_mat	0.5-2 m	Wilcoxon (p=0.8512)
CRR_total	0.5-50 m	Wilcoxon (p=0.6447)
CRR_copas	2-50 m	Wilcoxon (p=0.9063)
PRN_16a50	16-50 m	Wilcoxon (p=0.4762)
PRN_12a16	12-16 m	Wilcoxon (p=0.7284)
PRN_8a12	8-12 m	Wilcoxon (p=0.4836)
PRN_6a8	6-8 m	Wilcoxon (p=0.118)
PRN_4a6	4-6 m	Wilcoxon (p= 0.01844)
PRN_3a4	3-4 m	Wilcoxon (p= 0.01471)
PRN_2a3	2-3 m	Wilcoxon (p= 0.01778)
PRN_1a2	1-2 m	Wilcoxon (p= 0.04982)
PRN_05a1	0.5-1 m	Wilcoxon (p=0.0000)

Efecto significativo sobre variables estructurales relacionadas con la cobertura o densidad de la vegetación

- FCC arbolado
- FCC estrato inferior
- PRN (tramos inferiores)

Diferencias **NO significativas** en PRN de **tramos superiores** (> 6m)

 Pérdida penetrabilidad del laser a menor densidad del pulso

Resultados: métricas LiDAR

FCC_mat = cobertura estrato inferior (< 2m) PRN_05a1 = % normalizado retornos entre 0,5 y 1 m

Resultados: métricas LiDAR

Variable	Estrato	Test (p-valor)
FCC_total	0.5-50 m	Wilcoxon (p=0.00308)
FCC_copas	2-50 m	Wilcoxon (p=0.00193)
FCC_mat	0.5-2 m	Wilcoxon (p=0.00715)
H_P99	2-50 m	T-test (p=0.8873)
H_P95	2-50 m	T-test (p=0.7103)
H_P90	2-50 m	T-test (p=0.6416)
H_mat	0.5-2 m	Wilcoxon (p=0.8512)
CRR_total	0.5-50 m	Wilcoxon (p=0.6447)
CRR_copas	2-50 m	Wilcoxon (p=0.9063)
PRN_16a50	16-50 m	Wilcoxon (p=0.4762)
PRN_12a16	12-16 m	Wilcoxon (p=0.7284)
PRN_8a12	8-12 m	Wilcoxon (p=0.4836)
PRN_6a8	6-8 m	Wilcoxon (p=0.118)
PRN_4a6	4-6 m	Wilcoxon (p= 0.01844)
PRN_3a4	3-4 m	Wilcoxon (p= 0.01471)
PRN_2a3	2-3 m	Wilcoxon (p= 0.01778)
PRN_1a2	1-2 m	Wilcoxon (p= 0.04982)
PRN_05a1	0.5-1 m	Wilcoxon (p=0.0000)

- Efecto NO significativo sobre variables estructurales relacionadas con las alturas de
- Altura del arbolado •
- Altura del estrato inferior ٠
- Índices derivados (CRR) ٠

Resultados: métricas LiDAR

H_P90 = altura del percentil 90 de los retornos

CRR_05a50 = índice estructura vertical de la vegetación

Resultados: modelos de estimación de variables estructurales

Variable	Vuelo	Tipo de	Variable	Parámetro	R ²	p-valor
dependiente	Lidar	modelo	independiente	estimado	ajustado	
CFL1	L1	Potencial	Intercepto	-6,77597***	0,651	< 0,0001
			FCC_total	1,44679***		
			H_P20	0,16498***		
CFL1	L2	Potencial	Intercepto	-5,08179***	0,593	< 0,0001
			FCC_total	1,09876***		
			H P10	0.14653***		
CFL2	L1	Potencial	Intercepto	-5,91996***	0,651	< 0,0001
			FCC_total	1,44357***		
			H_P20	0,16569***		
CFL2	L2	Potencial	Intercepto	-4,23502***	0,594	< 0,0001
			FCC_total	1,09792***		
			H_P10	0,14674***		
Но	L1	Lineal	Intercepto	3,9251***	0,882	< 0,0001
			H_P80	0,5734***		
			H_P90	0,3063**		
Но	L2	Lineal	Intercepto	4,0633***	0,874	< 0,0001
			H_P80	0,5117***		
			H_P90	0,3693**		

L1 = LIDAR PNOA

L2 = LiDAR específico

Resultados: modelos de estimación de variables estructurales

Variable	Vuelo	Tipo de	Variable	Parámetro	R ²	p-valor
dependiente	Lidar	modelo	independiente	estimado	ajustado	
CFL1	L1	Potencial	Intercepto	-6,77597***	0,651	< 0,0001
			FCC_total	1,44679***		
			H_P20	0,16498***		
CFL1	L2	Potencial	Intercepto	-5,08179***	0,593	< 0,0001
			FCC_total	1,09876***		
			H P10	0.14653***		
CFL2	L1	Potencial	Intercepto	-5,91996***	0,651	< 0,0001
			FCC_total	1,44357***		
			H_P20	0,16569***		
CFL2	L2	Potencial	Intercepto	-4,23502***	0,594	< 0,0001
			FCC_total	1,09792***		
			H_P10	0,14674***		
Но	L1	Lineal	Intercepto	3,9251***	0,882	< 0,0001
			H_P80	0,5734***		
			H_P90	0,3063**		
Но	L2	Lineal	Intercepto	4,0633***	0,874	< 0,0001
			H_P80	0,5117***		
			H_P90	0,3693**		

L1 = LIDAR PNOA

L2 = LiDAR específico

Resultados: modelos de estimación de variables estructurales

Variable	Vuelo	Tipo de	Variable	Parámetro	R ²	p-valor
dependiente	Lidar	modelo	independiente	estimado	ajustado	
CFL1	L1	Potencial	Intercepto FCC_total	-6,77597*** 1 44679***	0,651	< 0,0001
			H_P20	0,16498***		
CFL1	L2	Potencial	Intercepto	-5,08179***	0,593	< 0,0001
			FCC_total	1,09876***		
			H_P10	0,14653***		
CFL2	L1	Potencial	Intercepto	-5,91996***	0,651	< 0,0001
			FCC_total	1,44357***		
			H_P20	0,16569***		
CFL2	L2	Potencial	Intercepto	-4,23502***	0,594	< 0,0001
			FCC_total	1,09792***		
			H_P10	0,14674***		
Но	L1	Lineal	Intercepto	3,9251***	0,882	< 0,0001
			H_P80	0,5734***		
			H_P90	0,3063**		
Но	L2	Lineal	Intercepto	4,0633***	0,874	< 0,0001
			H_P80	0,5117***		
			H_P90	0,3693**		

L1 = LIDAR PNOA

L2 = LiDAR específico

Conclusiones

Comparación directa de las nubes de puntos

- ✓ diferente respuesta de las métricas LiDAR según los parámetros estructurales
- ✓ efecto no significativo para las **alturas** del arbolado
- ✓ diferencias significativas en las métricas relacionadas con la **cobertura de la vegetación**
- ✓ diferencias en la distribución del perfil vertical de retornos para tramos de altura inferiores

Conclusiones

Estimación de parámetros estructurales de las masas arboladas

- ✓ altura dominante: modelos robustos y con buena capacidad predictiva independientemente de la densidad de pulsos
- ✓ carga de combustible de las copas: modelos similares con ambas densidades LiDAR y altamente significativos, aunque con menor porcentaje de variabilidad explicada
- ✓ densidad y altura de los pies menores: más difícil de estimar con ambas densidades

Necesidades

- Investigar nuevos modelos de predicción (combustibles superficie y copas)
- Profundizar en efectos reales de la densidad de pulsos (densidades más altas) en la caracterización de combustibles forestales

AGRADECIMIENTOS Javier Donés, Centro de Montes y Aserradero de Valsaín

Contacto emarino@agresta.org

Contribuye al desarrollo del sector forestal ¡Ven a proponernos tus retos!

Gestión del monte: servicios ambientales y bioeconomía

26 - 30 junio 2017 Plasencia Cáceres, Extremadura

www.congresoforestal.es

