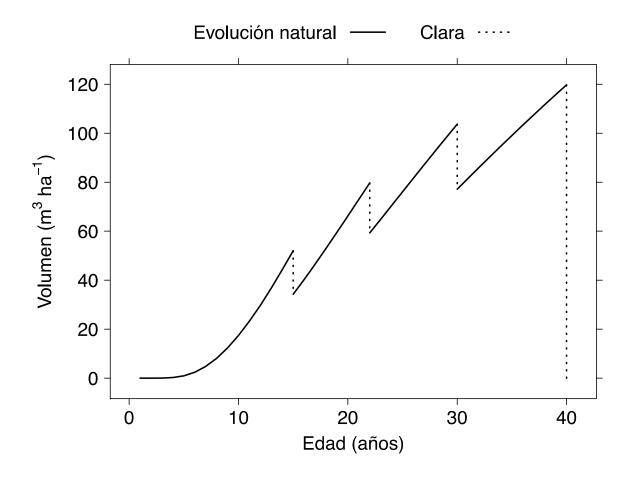


Elección de los parámetros del algoritmo de evolución diferencial en optimización forestal a nivel rodal

Manuel Arias-Rodil^{1, 2}, Marcos Barrio-Anta³, José Mario González-González ² y Ulises Diéguez-Aranda ²

Plasencia, 27 de junio de 2017

¹ Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa Tapada da Ajuda, 1349-017, Lisboa (Portugal)

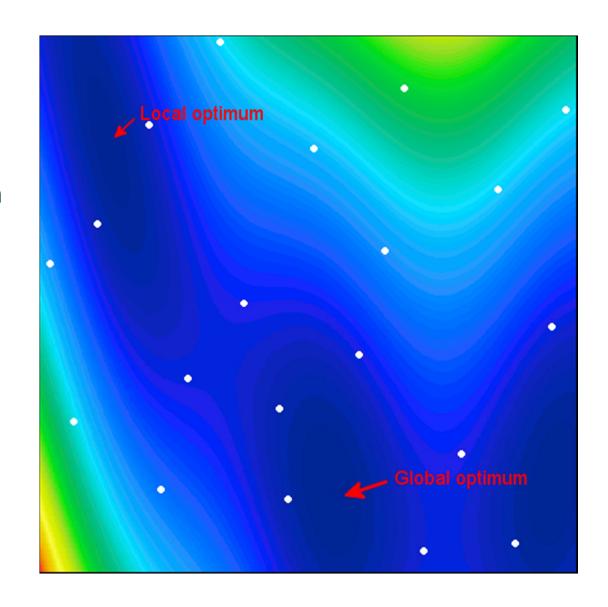

² Unidad de Gestión Forestal Sostenible, Departamento de Ingeniería Agroforestal, Universidade de Santiago de Compostela Escola Politécnica Superior, Campus Terra, 27002, Lugo (España)

³ Grupo de Investigación en Sistemas Forestales Atlánticos (GIS-Forest), Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo Escuela Politécnica de Mieres, C/Gonzalo Gutiérrez Quirós, 33600, Mieres (España)

Algo sobre optimización...

Optimización a nivel rodal: selección del programa selvícola óptimo

Objetivo: Valor Esperado del Suelo (VES)


Técnicas de optimización

- Depth-first search
- Hooke y Jeeves(1961)
- Métodos basados en poblaciones de soluciones

Óptimo global

Algoritmo de evolución diferencial

Objetivo

- ► Selección de valores de los parámetros → evolución diferencial
- Relación entre variables de rodal y parámetros

¿Qué necesitamos?

Modelo de crecimiento y producción (Pinus pinaster en Asturias)

+

Ejecución de claras

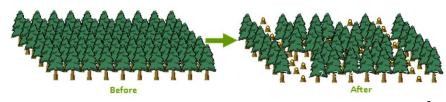
+

Algoritmo optimización (evolución diferencial)

+

Información de costes y precios de madera

Programa selvícola


- Número de claras
- Momento de clara
- Intensidad de clara
- Momento de corta final

Función objetivo

Ingresos de madera

Costes de operaciones

Restricciones

• Intensidad máxima de clara: 45%

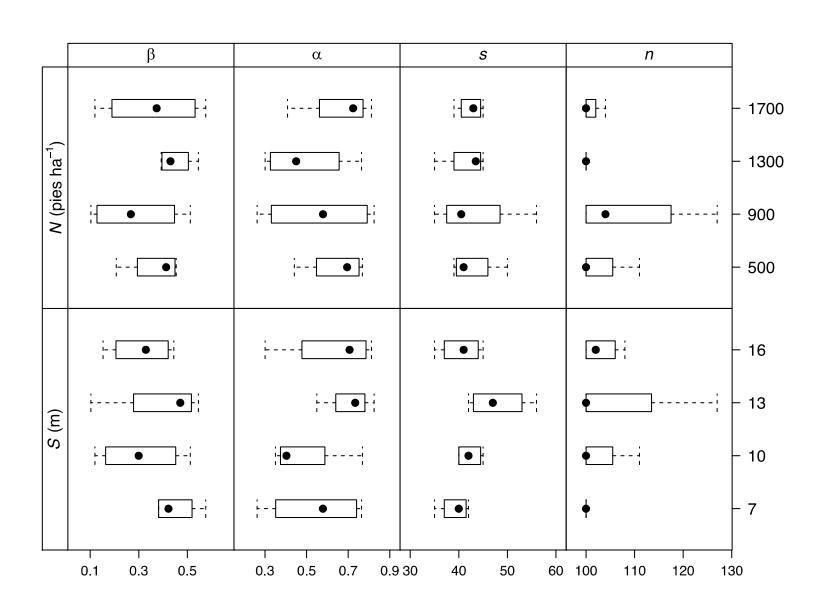
- Intervalo mínimo entre claras: 5 años
- Turno máximo de rotación: 100 años

Algoritmo de evolución diferencial

- Generación aleatoria de población de soluciones
- En cada iteración:
 - 1) Seleccionar un vector solución: x_i
 - 2) Combinar 3 soluciones seleccionadas aleatoriamente: y_i
 - 3) Nueva solución x_i : selección de elementos de x_i y y_i
 - 4) Evaluar nueva solución

Parámetros

- 1) Número de soluciones en la población
- 2) Número de iteraciones
- 3) Parámetro β : creación de y_i
- 4) Parámetro α : creación de x_t


Optimización

- Rodales de ejemplo: índice de sitio y densidad de plantación
- Metaoptimización → rodal de ejemplo
 - 1) Selección de parámetros iniciales del algoritmo
 - Optimizar el programa selvícola: selección de la mejor tras
 10 repeticiones
 - 3) Modificación de los parámetros del algoritmo
 - 4) Repetición de los pasos 2 y 3 hasta alcanzar un criterio de parada

 $R \rightarrow constrOptim()$

¿Qué obtuvimos?

Concluyendo...

- No correlación variables parámetros
- Parámetros α y β: mayor variabilidad
- Otras alternativas:
 - Hooke & Jeeves (1961)
 - Sequential Quadratic Programming
 - •

AGRADECIMIENTOS

Ayuda FPU (referencia AP2012-5337) del Ministerio de Educación, Cultura y Deporte de España

manuel.arias.rodil@gmail.com

Gestión del monte: servicios ambientales y bioeconomía

