

Plasticidad fenotípica y variación genética en eficiencia en uso del agua en *Pinus sylvestris*

Jordi Voltas Velasco

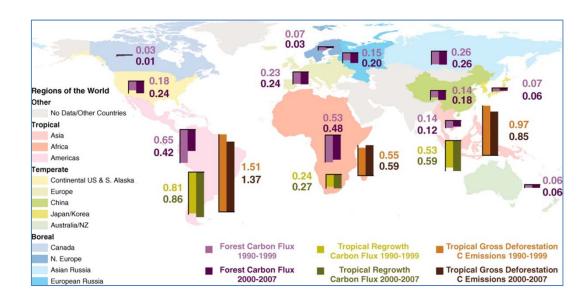
Ester Sin Casas, Pau Vericat Grau, Luis Serrano Endolz, Miriam Piqué Nicolau, Eduardo Notivol Paíno, Juan Pedro Ferrio Díaz

Departmento de Producción Vegetal y Ciencia Forestal – Centro AGROTECNIO, Universidad de Lleida

Área de Gestión Forestal Sostenible, Centro Tecnológico Forestal de Catalunya Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón

Departamento de Botánica, Universidad de Concepción (Chile)

Plasencia, 27 de Junio de 2017



Balance de agua y carbono en bosques

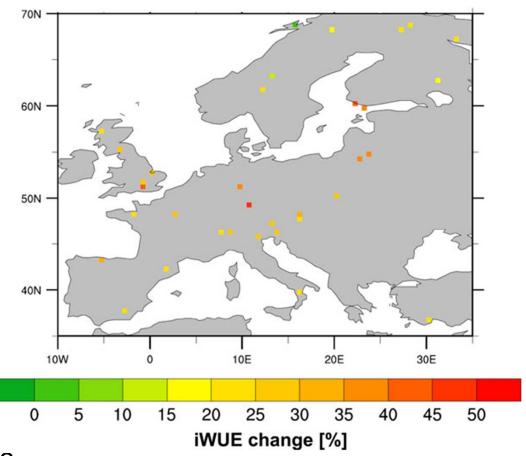
Un 56% de la ETP terrestre proviene de los bosques (Schlesinger & Jasechko, 2014)

Los bosques representan un sumidero de carbono de ca. 1.1 ± 0.8 Pg (10¹⁵) por año (Pan y col., 2011)

Pan y col. (2011)

- Pan, Y. et al. (2011). A large and persistent carbon sink in the world's forests. *Science*, 333(6045), 988-993.
- Schlesinger, W. H., & Jasechko, S. (2014). Transpiration in the global water cycle. *Agricultural and Forest Meteorology*, 189, 115-117.

Eficiencia en el uso del agua


A nivel de ecosistema

Productividad bruta Evapotranspiración

A nivel de hoja: → EUA_i

Asimilación fotosintética

Conductancia estomática

EUA_i está condicionada por:

- Incremento en CO₂ atmosférico
- Cambio climático

Modificado de Saurer et al. (2014)

Saurer, M., et al. (2014). Spatial variability and temporal trends in water-use efficiency of European forests. *Global Change Biology*, *20*(12), 3700-3712.

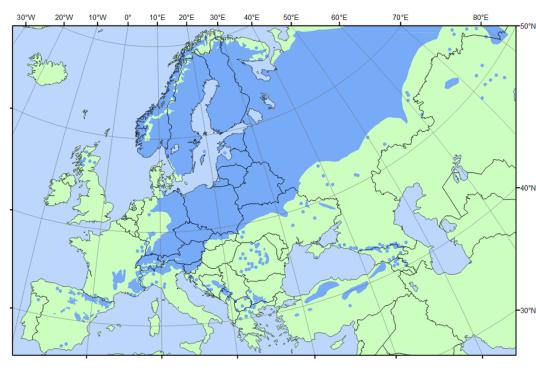
Adaptación genética y plasticidad

<u>Plasticidad fenotípica</u>: conjunto de fenotipos que puede mostrar un individuo en respuesta a distintos ambientes

----- componente espacial

componente temporal

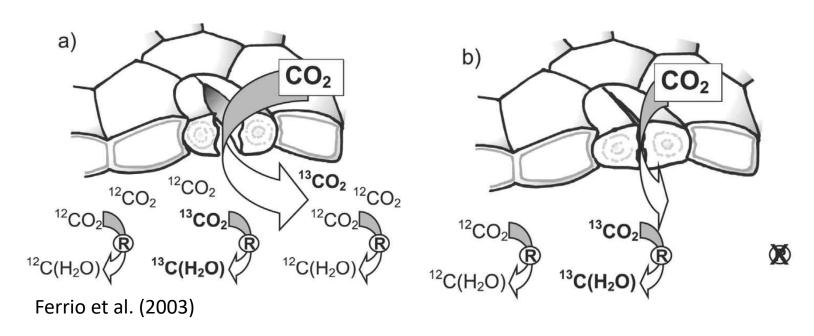
<u>Adaptación genética:</u> selección local de genotipos que se comportan mejor en ciertos ambientes


----- variación <u>intraespecífica</u>

Ambos componentes son relevantes para monitorizar feedbacks entre clima y vegetación

El caso de *Pinus sylvestris* L.

Conífera muy plástica y genéticamente diversa en muchos caracteres funcionales (fenología, crecimiento, densidad de madera, ...)


Objetivo:

Cuantificar la importancia relativa de la variación intraespecífica y la plasticidad fenotípica de EUAi en la conífera de mayor distribución en el hemisferio norte

EUFORGEN 2009

Isótopos estables y EUA_i



Las plantas C3 discriminan en contra del isótopo más pesado ¹³C

 $EUA_i = (C_a \times (b - \Delta^{13}C)) / (1.6 \times (b-a))$ (Farquhar *et al.* 1989)

Muestreo (anillos de madera)

- Ensayo de procedencias
- → variación intra-especie
- Masas naturales
- plasticidad espacial
- Cronologías (2)
- plasticidad temporal

Análisis estadístico

$$EUA_i = f(Bloque) + r(Población) + r(Población x Bloque) + \varepsilon$$

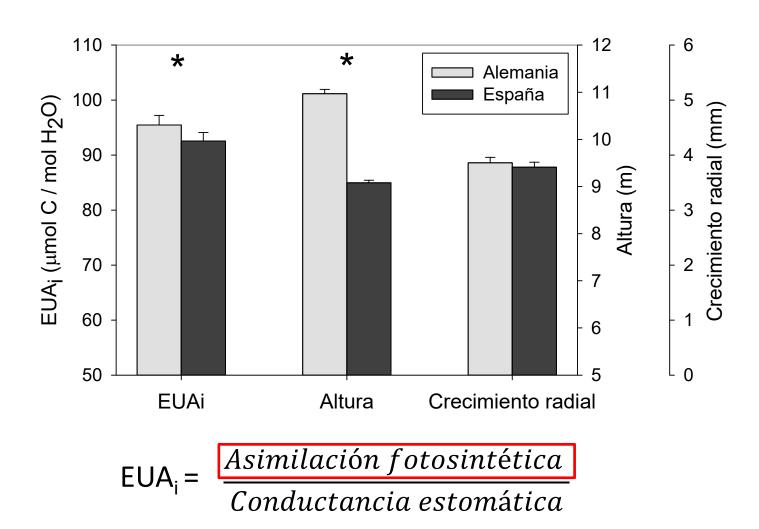
Variación intraespecífica

$$EUA_i = r(Localidad) + \varepsilon$$

Plasticidad espacial

$$EUA_i = f(Localidad) + r(Año) + r(Año x Localidad) + \varepsilon$$

- Plasticidad temporal
- Plasticidad espaciotemporal



Componentes de varianza

		Crecimiento
	EUA_i	radial
	$(\mu mol/mol)^2$	$(mm/año)^2$
Componente de varianza		
Genético (σ_G^2)	3.38 ± 3.73	0.03 ± 0.02
Plástico		
Espacial (σ_S^2)	28.05 ± 11.31	0.14 ± 0.05
Temporal (σ_T^2)	13.84 ± 4.25	0.05 ± 0.02
Espaciotemporal	0.22 ± 1.15	0.04 ± 0.02
$(\sigma^2_{S imes T})$		
Ratio		
$\sigma_{\!S}^{2}$ / $\sigma_{\!G}^{2}$	8.29	5.51
$\sigma_T^2 \ / \ \sigma_G^2$	4.09	1.87
$\sigma_{S imes T}^2 / \sigma_G^2$	0.06	1.33

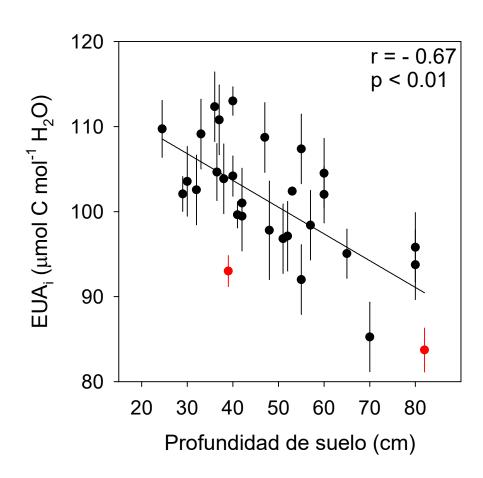
Variación intraespecífica

Plasticidad espacial

	EUA _i (μmol/mol) ²	Crecimiento radial (mm/year) ²
Componente de varianza		
Genético (σ_G^2) Plástico	3.38 ± 3.73	0.03 ± 0.02
Espacial (σ_S^2)	28.05 ± 11.31	0.14 ± 0.05
Temporal (σ_T^2)	13.84 ± 4.25	0.05 ± 0.02
Espaciotemporal	0.22 ± 1.15	0.04 ± 0.02
$(\sigma^2_{S imes T})$		

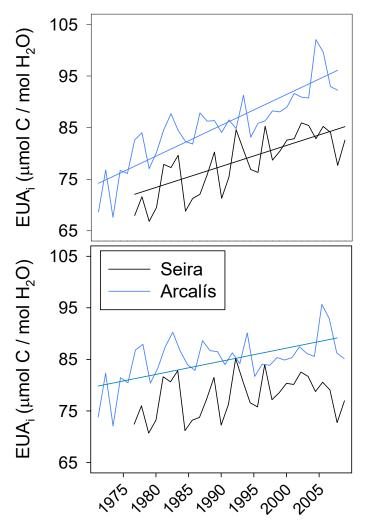
Plasticidad espacial

Variable	correlación (EUA _i)	Prob.
Altitud	-0.10	0.59
T _{an}	0.20	0.27
T_{max}	0.17	0.36
T_{min}	0.25	0.18
P _{an}	-0.18	0.32
P_{v}	-0.09	0.62
P_{v}/P_{an}	0.22	0.24
ETP	0.07	0.70
Profundidad de suelo	-0.67	< 0.01
Carbonatos	0.21	0.27
Pedregosidad	0.17	0.37
Area basimetrica	0.19	0.31
Densidad	0.27	0.15
Posición fisiográfica	-0.03	0.86
Orientación	-0.05	0.77
Altura del árbol	-0.24	0.22
Edad	-0.14	0.15
Crecimiento radial	-0.02	0.83


Plasticidad espacial

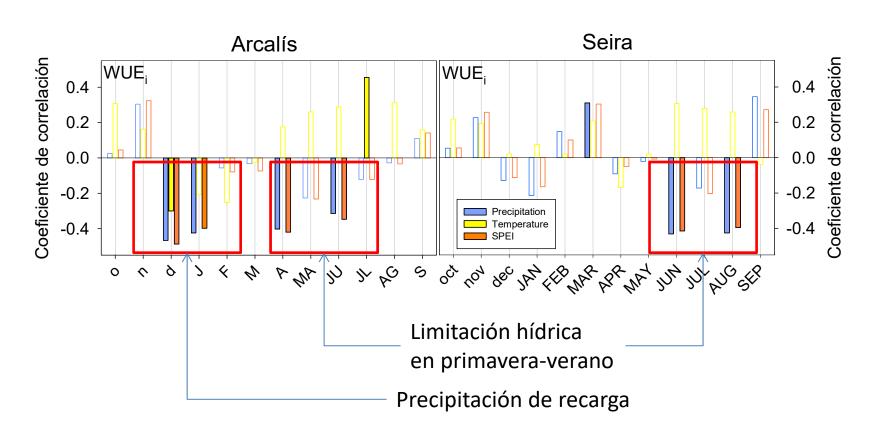
- Temperatura media anual:
 - 6.2 -10.8 C
- Precipitación anual:

804 mm – 1117 mm


ETP anual:

678 mm – 854 mm

Plasticidad temporal



C _a variable	
	Crecimiento
EUA_i	radial
(µmol/mol) ²	(mm/year) ²
3.38 ± 3.73 Canstante: 13.84 ± 4.25 0.22 ± 1.15	0.03 ± 0.02 0.14 ± 0.05 0.05 ± 0.02 0.04 ± 0.02

Plasticidad temporal

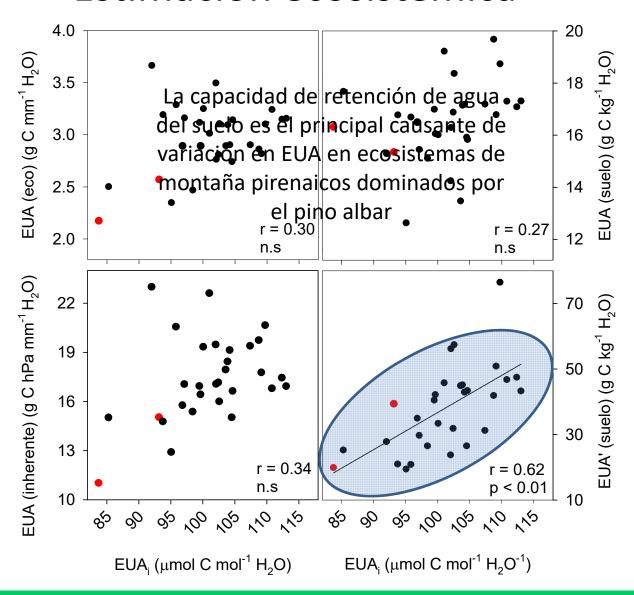
Dependencia climática

Estimación ecosistémica

Datos obtenidos mediante teledetección (satélites Modis y SMOS) (1 km²):

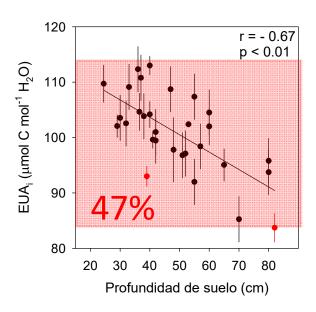
$$\underline{\text{EUA}}$$
 (ecosistema) (Huang y col. 2015) = $\frac{Productividad\ bruta}{Evapotranspiración}$

$$\underline{\mathsf{EUA}} \text{ (suelo) (He y col. 2017)} = \frac{Productividad\ bruta}{Contenido\ de\ agua\ (por\ m\ de\ suelo)}$$


EUA (inherente) (Beer y col. 2009) = EUA (eco) × Déficit presión vapor

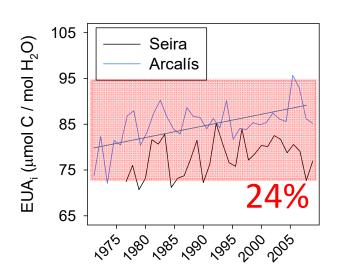
$$\underline{\mathsf{EUA'}} \text{ (suelo)} = \frac{EUA \text{ (suelo)}}{Profundidad \ de \ suelo \ \acute{\mathsf{u}}til}$$

- Huang, M., et al. (2015). Global Change Biology, 21(6), 2366-2378.
- He, B., et al. (2017). *Ecological Indicators*, 75, 10-16.
- Beer, C., et al. (2009). Global Biogeochemical Cycles, 23(2).



Estimación ecosistémica

- Escasa variación intraespecífica en
 EUA_i Baja presión selectiva sobre EUA_i
- Notable variación atribuible a plasticidad fenotípica (rango ~50% a nivel espacial y ~25% a nivel interanual)



Escasa variación intraespecífica en
 EUA_i Baja presión selectiva sobre EUA_i

 Notable variación atribuible a plasticidad fenotípica (rango ~50% a nivel espacial y ~25% a nivel interanual)

 Dicha variación en EUA puede detectarse a nivel de ecosistema

Capacidad de retención de agua del suelo

Los resultados ponen de manifiesto la necesidad de:

- 1) Integrar respuestas plásticas y de divergencia genética, a nivel de especie, frente a cambios ambientales
- Incorporar información microambiental precisa (ej. profundidad útil de suelo)

en la estimación de flujos de agua y carbono a escala ecosistémica.

En definitiva, la variabilidad en EUA dentro de especie, y sus causas externas, deberían considerarse al modelizar flujos de agua y carbono en ecosistemas forestales.

AGRADECIMIENTOS MINECO (FUTURPIN - AGL2015-68274-C3-3-R), GENFORED

Contacto jvoltas@pvcf.udl.es

Gestión del monte: servicios ambientales y bioeconomía

Sociedad Española
de Ciencias Forestales

www.congresoforestal.es